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Stable chaos refers to the long irregular transients, with a negative largest Lyapunov exponent, which is
usually observed in certain high-dimensional dynamical systems. The mechanism underlying this phenomenon
has not been well studied so far. In this paper, we investigate the dynamical formation of stable irregular
transients in coupled discontinuous map systems. Interestingly, it is found that the transient dynamics has a
hidden pattern in the phase space: it repeatedly approaches a basin boundary and then jumps from the boundary
to a remote region in the phase space. This pattern can be clearly visualized by measuring the distance
sequences between the trajectory and the basin boundary. The dynamical formation of stable chaos originates
from the intersection points of the discontinuous boundaries and their images. We carry out numerical experi-
ments to verify this mechanism.
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I. INTRODUCTION

Usually, nonlinear dynamical systems may have stable at-
tractors such as fixed points, limited cycles, or chaotic attrac-
tors. Apart from these, interestingly, it is shown that irregular
long transients can also occur in such systems. For continu-
ous dynamical systems, these irregular long transients are
usually due to the existence of high-dimensional chaotic
saddles in phase space �see recent review �1� for details�.
These chaotic saddles often appear after crisis bifurcation
�2�. The system may spend extremely long time in the vicin-
ity of the chaotic saddle and behaves as irregular as chaotic.
Due to this reason, this type of irregular transients is usually
called transient chaos, which is sensitive to the initial condi-
tion and thus have a positive largest Lyapunov exponent. For
example, in Ref. �3�, it is found that the development of
transient chaos is related to the unstable-unstable pair bifur-
cation, which involves an unstable periodic orbit �UPO� in
the chaotic attractor and another one on the basin boundary.
Moreover, another interesting finding along this line is the
supertransient, whose average lifetime could be very long
even far from the bifurcation point �4,5�. Such supertran-
sients have also been found in stochastic dynamical systems
�6,7�.

However, there exists another distinct type of irregular
transient that has negative largest Lyapunov exponent, usu-
ally occurring in discontinuous systems. This phenomenon
was first observed in the coupled map lattice �8�. The com-
plex transients behave irregularly with exponential decay of
correlation both in time and space �9�. In addition, the tran-
sient time usually grows exponentially with system size,
which makes the attractors unreachable in large systems.
Due to these properties, the transient is termed as stable
chaos �9,10�. Later, stable chaos was also reported in various
types of dynamical systems �11–13�. Recently, it was found
in the pulse-coupled oscillators systems, which are fre-

quently used to model neuronal activity �14–16�. In all the
above works, the stable chaos appears in discontinuous map
systems �or discontinuous return maps�. Interestingly, it is
found that the stable chaos could also appear in the continu-
ous map system, where there exists a transition from the
standard chaos to the stable chaos �17�.

There are some efforts attempting to illustrate the mecha-
nism underlying the formation of stable chaos. For example,
in Ref. �8�, it was conjectured that the stable chaos is due to
the hierarchical organization of subbasins in phase space.
The subbasins are subspaces of a basin separated by walls
through which an orbit cannot pass except at portals. The
irregular transient is regarded as a sequence of transitions
through a hierarchy of subbasins. However, the formation of
these subbasins and portals is still not well understood. In
Ref. �18�, the stable chaos was attributed to the ordinary
chaos in a continuous system slightly altered from the origi-
nal discontinuous system. One deficiency of this approach is
that chaos can exist even in a one-dimensional continuous
map, while stable chaos typically happens in high-
dimensional dynamical systems. In addition, Ref. �10�
showed that the alteration could be too large for some sys-
tems. It was shown that the stable chaos is analogous to
deterministic cellular automata �9�. Along this line, the stable
chaos was attributed to the nonlinear propagation of finite
disturbances from the outer regions �10�, and a stochastic
model was presented to understand the mechanism of this
nonlinear information flow �12�. However, the direct basic
mechanism is still unclear. In spite of the works mentioned
above, the dynamical formation of stable chaos has not been
well studied to date and the mechanism is still unclear. In
particular, how the stable chaos develops from the governing
dynamical equations is not fully understood. One possible
reason for this is that these global behaviors usually occur in
high-dimensional dynamical systems, which is usually diffi-
cult to deal with mathematically.
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In this paper, we focus on the problem on the dynamical
formation of stable chaos in the discontinuous systems. For
these systems, it is natural to relate the occurrence of stable
chaos to the discontinuity of the local dynamics of the
coupled dynamical systems. Motivated by this idea, in this
paper, we directly investigate some coupled discontinuous
map systems, which are different from the previous works.
Our particular interest is to reveal how the discontinuity in
the local dynamics of a coupled system can induce stable
chaos. To this end, we specifically construct dynamical mod-
els, whose local maps have only contracting pieces with ab-
solute determinant smaller than 1. As a consequence, the
occurrence of chaos is excluded in such systems, and the
generated long irregular transient is stable chaos by nature.

The organization of this papers is as follows. In Sec. II,
we show that accompanying stable chaos, a regular pattern
always exists in both coupled discontinuous maps and pulse-
coupled oscillators. In Sec. III, the dynamical origin of stable
chaos is analyzed and verified by a two-dimensional map.
Finally, conclusions are drawn in the last section.

II. REGULAR PATTERN ACCOMPANYING
STABLE CHAOS

In continuous dynamical systems, the stable manifolds of
the saddle periodic orbits compose the basin boundaries.
However, for discontinuous map systems with only contract-
ing local dynamics, the basin boundaries could only include

the set of points whose dynamics are discontinuous. This set
of points comprises the pre-images of the discontinuous
boundaries and the discontinuous boundaries themselves. In-
tuitively, the stable chaos might be related to this set. Nor-
mally, we cannot obtain this set directly because of the high
dimensionality of the phase space. However, the basin
boundaries can be easily detected. We can measure the dis-
tance of each point in the trajectory to the basin boundaries.
Therefore, for each transient trajectory, we will have a cor-
responding distance sequence.

The distance of a point x to the basin boundaries B is
defined to be d=min�x−y�2, where y�B. This distance d�x�
also quantifies the degree of stability of the system under
finite perturbation at a given point x. If the perturbation
added to the system is larger than d�x�, the system will jump
to another attractor. In this sense, the distance is the maximal
finite perturbation that the system can tolerate without losing
the stability. We use a simple procedure to obtain this dis-
tance. The steps are �1� randomly sprinkle many initial
points, for example, 200, in a hypersphere with center x and
radius r. Initially, r is set to be a large value. If all the initial
points settle onto the same attractor as the center x, go to step
�3�. �2� Set the new radius r to be the minimum distance
between the center and the set of initial points who have
different final attractor from the center. �3� If r does not
change in the sequential m, say 5, times, stop. Otherwise,
repeat the above steps.

To illustrate this idea, we first consider the following
coupled map lattice with a periodic boundary �8�:

(b)(a)

(c)

FIG. 1. �Color online� �a� The long irregular transients observed in Eq. �1� for x1. n is the time step. �b� The corresponding distance
sequence d to the basin boundaries. �c� The enlargement of the rectangle in �b�.
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xi�n + 1� =
1

2r + 1 �
j=−r

r

f�xi+j�n�� , �1�

where the local dynamics is f�x��sx+��mod 1�. When s is
smaller than 1, the system �1� will finally approach a periodic
attractor because of the negative Lyapunov spectrum. We
choose s=0.9 and �=0.118 in this paper. We consider
nearest-neighbor coupling r=1. The number N of oscillators
is 28, for which the irregular long transient is prominent. For
the individual local map, there is a discontinuous boundary
at x= �1−�� /s=0.98.

Figure 1�a� shows a typical stable irregular transient in
this system. Its corresponding distance sequence to the basin
boundaries is shown in Figs. 1�b� and 1�c�. To our surprise,
we find a regular pattern in the distance sequence despite of
the irregular transient dynamics. As clearly shown in Fig.
1�c�, the distance sequence first gradually approaches the ba-
sin boundaries. Then it jumps to some remote regions in the
phase space and begin to approach the basin boundaries once
again. During the whole transient period, such pattern repeat-
edly occurs, until finally the system settles down on the
trivial attractors.

Similarly, the regular pattern in the distance sequence can
also be observed in the inhibitory pulse-coupled oscillators.
This model describes N oscillators, such as neurons, interact-
ing on a direct network by sending and receiving pulses
�15,19,22,23�. The state of each oscillator i is specified by a

phaselike variable �i�t�� �−� ,1�. The dynamics of the
single oscillator i is given by

d�i/dt = 1. �2�

When �i�t� reaches a phase threshold 1, this phase is reset to
zero �i�t+�=0 and a pulse is generated. After a delay time �,
this pulse is received by all oscillator j having an in-link
from i. This induces a phase jump in j according to

� j�t + ��+ = min�U−1�U„� j�t + ��… + � ji�,1	 , �3�

where the function U, which determines the phase jump, is
twice continuously differentiable, monotonically increasing,
concave and normalized �U�0�=0 and U�1�=1�. Further-
more, the coupling strength is also normalized as �ij =� /kj,
where kj represents the number of incoming links of node
j �in-degree in graph term�. This model is equivalent to the
standard leaky integrate-and-fire model with Ui���=�i

−1Ii�1
−exp�−�i��� �15�.

It is convenient to investigate the dynamics in a return
map by choosing an arbitrary oscillator as reference �22�.
Here the oscillator 1 is chosen. When the reference oscillator
is reset, the phases are recorded. The number of reset times is
used as time step for the return map. The dynamics can be
simulated by an event-by-event-based numerical calculation,
which can be applied to obtain the solutions for the pulse-
coupled network with delay �20�.

(b)(a)

(c)

FIG. 2. �Color online� �a� The long irregular transients observed for pulse-coupled oscillators for �2 using oscillator 1 as reference. The
n represents the number of times the reference oscillator has been reset. �b� The corresponding distance sequence d to the basin boundaries.
�c� The enlargement of the rectangle in �b�.
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We choose the similar parameter values as in Ref. �15�,
where the existence of stable irregular transients is analyti-
cally proved, i.e., �i=1, Ii=4.0, b=1, �=−1.6, and �=0.1.
The network size is fixed at N=20. We observed that long
irregular transients exist when diluting links from fully
coupled networks. Figure 2�a� shows one typical transient
trajectory for connection probability p=0.2. From the dis-
tance sequence to the basin boundaries, as shown in Figs.
2�b� and 2�c�, once again, we find the similar pattern as
shown in Fig. 1. During transients, the trajectory repeatedly
goes to the basin boundaries and then jumps to some remote
regions in the phase space. The existence of the same regular
pattern in the above two different systems strongly suggests
that the formation of stable chaos in different discontinuous
dynamical systems actually could have the same dynamical
origin. We emphasize that such pattern is unique in stable
chaos and does not exist in chaotic transients observed in the
excitory pulse-coupled oscillators �21�, which should have a
different mechanism.

III. DYNAMICAL FORMATION OF STABLE CHAOS

In Sec. II, we observe a regular pattern in the stable chaos
by measuring the distance to the basin boundaries for each
point in the transient trajectory. This regular pattern displays
the internal structure of the stable irregular transients. During

the transient period, the trajectory repeatedly goes to differ-
ent regions on the basin boundaries. This seems to suggest
that there is a path that can connect two different places on
the basin boundaries. Through extensive numerical experi-
ments, we confirm the existence of such paths. Furthermore,
it is found that the ending point of such a path is an image of
the starting point, and both the starting point and the ending
point are on the discontinuous boundaries. We thus call this
path a guiding path. The dynamical formation of this path is
through the intersection of discontinuous boundaries with
their images. It can be easily verified that the transient struc-
ture in the system �1� is formed in this way, where the dis-
continuous boundaries are xi=0.98. The dynamical origin of
stable chaos lies in the formation of many guiding paths in
phase space. At the starting and the ending points, the dy-
namics are discontinuous. Between these two points, the tra-
jectory usually follows the contracting dynamics, which re-
sults in the decreasing distance to the basin boundaries.

To verify the above mechanism of the formation of stable
chaos, we need to locate guiding paths and then compare
with the corresponding jumping processes from one region
to another region on the basin boundaries. For high-
dimensional systems, such as Eq. �1�, we can obtain approxi-
mately the underlying guiding path by sampling many initial
points, say 106, in a small region where a jumping process
starts. The length of guiding path n usually is the same as the
jumping process. We can obtain all these trajectories with
length n. Then we approximate the guiding path by a trajec-
tory with minimum quantity D, where D is defined to be the
sum of distance of two end points of a trajectory to the dis-
continuous boundaries. In this way, we can verify that there
is a guiding path governing the jumping process from one
region of basin boundaries to another region.

To be more accurate and more reliable, here we construct
a two-dimensional map and develop a numerical technique
to obtain the guiding paths with high accuracy. The dynami-
cal equations of the discontinuous maps are

x1 = ef�x1� + �1 − e�f�x2� ,

x2 = ef�x2� + �1 − e�f�x1� , �4�

FIG. 3. A map with only contracting pieces and many discon-
tinuous boundaries.

(b)(a)

FIG. 4. A typical transient trajectory �a� for Eq. �2� and its corresponding distance sequence �b�.
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where the local map f is shown in Fig. 3, which can be
regarded as the generalized map used in Eq. �1� with more
discontinuous boundaries.

In the following, we specifically describe the technique to
locate the guiding paths accurately for the two-dimensional
maps F, whose discontinuous boundaries are composed of
straight lines. The key procedure of this technique is to lo-
cate the guiding paths with given length n and an initial
interval �A ,B�. By varying n and the interval, we can locate
all the guiding paths of interest. To this end, we divide the
phase space into squares or cells by the discontinuous bound-
aries. An interval �A ,B� may contain starting points of the
guiding paths if Fn�A� and Fn�B� fall into two different cells.
Consider the midpoint m= �A+B� /2, we can find a smaller
interval �A ,m� or �m ,B� whose nth images of the two end
points fall into two different cells. We can recursively apply
this bisection method to shrink the interval and obtain an
interval �a ,b� with given accuracy, say, 10−6. Then one nth
image of the two end points will be the ending point of the
guiding path if it is within the distance 10−6 of discontinuous
boundaries. After that, we consider the remaining interval
�b ,B�. In this way, we can find all guiding paths with length
n with starting points belonging to �A ,B�.

A typical transient trajectory in Eq. �4� is shown in Fig.
4�a� for e=0.09. In the distance sequence, as shown in Fig.
4�b�, a regular pattern similar to those in Figs. 1�c� and 2�c�
is much more evident. Here, since our system is only two
dimensional, it is easy for us to directly verify our analysis of
the mechanism that led to the formation of stable chaos. In
Fig. 5, we plot the part of the transient trajectory within a
specific time window, i.e., from n=18 to n=35. As shown in
Fig. 4�c�, during this time period, the transient trajectory
goes from one region of the basin boundary to another region
of the basin boundary. In Fig. 5, we plot both the transient
trajectory from n=18 to n=35, and a guiding path. Remark-
ably, it is clearly seen that the transient trajectory exactly
follows the guiding path going from one point of the basin
boundary to another point on the basin boundary. Since there

exist plenty of these guiding paths in the phase space, we can
expect long irregular transients to occur in such coupled map
systems, especially when the dimension of the coupled sys-
tem is very high.

It is interesting to compare stable chaos to the transient
chaos usually occurring in continuous dynamical systems.
The skeleton for transient chaos is the infinite number of
UPOs embedded in the chaotic saddle. While for the stable
irregular transient or stable chaos, the underlying micro-
scopic structure is the guiding path with both starting and
ending points on the discontinuous boundaries. A guiding
path is not a cyclic structure, i.e., the starting and ending
points are not the same, which is the major difference with
an UPO. The regular patterns occurring in the high-
dimensional systems �1� and �2� imply that the guiding paths
are clustered in phase space, which is similar to the dense
UPOs. Here, the clustered guiding paths are generally asso-
ciated with the large number of discontinuous boundaries in
the high-dimensional systems. For Eq. �1�, the number of
discontinuous boundaries is N+ � N

2 �+ � N
3 �+¯. It is expected

that this fast growing of the number of discontinuous bound-
aries with dimension will make the guiding paths more clus-
tered in high-dimensional systems, somewhat similar to the
attractor crowding effect �24�. In turn, it will make stable
chaos more easily observed in high-dimensional systems.

From the microscopic structure, we can also understand
why stable chaos is unstable against finite small perturbation
�stable against infinitesimally small perturbation� �16�. Dur-
ing the long transient time, stable chaos takes places near
many guiding paths whose starting and ending points belong
to the basin boundaries.

IV. CONCLUSION

In this paper, we investigate the dynamical formation of
long irregular transients with negative largest Lyapunov ex-
ponent, i.e., the stable chaos, directly based on the dynamical
equations. We show that these irregular transients actually
have certain structure, which can be illustrated by the dis-
tance sequence to the basin boundaries. The transients re-
peatedly approach the basin boundaries and then jump from
the boundaries to a remote region in the phase space.
Through numerical simulations, it is shown that there exists
a guiding path, whose ending point is an image of the start-
ing point and both of them are on the discontinuous bound-
aries. It is these guiding paths that connect different points
on the basin boundaries, making the dynamics of the system
exhibits long irregular behavior before it goes to the final
stable attractor. Thus, the present work reveals a mechanism
for the formation of stable chaos in coupled discontinuous
map systems.
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FIG. 5. �Color online� Part of transient trajectory shown in plus
and a guiding path shown in circle from n=18 to n=35. The two
lines represent two discontinuous boundaries. The number repre-
sents the time step n.
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